

WELCOME

Chapter 9: Section 5 Segment Lengths in Circles

VARM-UP

1. What are the solutions of $x^2 + 11x + 30 = 0$?

A
$$x = 2$$
 or $x = 15$

C
$$x = -15$$
 or $x = -2$ **D** $x = 6$ or $x = 5$

A
$$x = 2$$
 or $x = 15$ **B** $x = -5$ or $x = -6$

D
$$x = 6 \text{ or } x = 5$$

2. What are the solutions of $x^2 - 30 = 6$?

A
$$x = 0$$
 or $x = -6$

$$C x = 0 \text{ or } x = 6$$

B
$$x = 6 \text{ or } x = -6$$

$$\mathbf{D}$$
 x = -6 only

3. What are the solutions of $x^2 + x = 20$?

A
$$x = 5 \text{ or } x = -4$$

$$C x = 5 \text{ or } x = 4$$

B
$$x = -5$$
 or $x = -4$

D
$$x = -5 \text{ or } x = 4$$

Chapter 9: Sect 5 Learning Target:

Calculate <u>Segments Lengths</u> in circles when <u>Secant and Tangent lines</u> are present.

Segment Chord Theorem

If two chords in a circle intersect then the products of the lengths of their segment parts are equal.

Chords \overline{ST} and \overline{PQ} intersect inside the circle. Find the value of x.

Congruent Tangency 10.3

If two segments from the same exterior point are tangent to a circle, then they are congruent.

 \overrightarrow{AB} is tangent to $\bigcirc C$ at B. \overrightarrow{AD} is tangent to $\bigcirc C$ at D.

Find the value of x.

Secant and Tangent Segments

When a secant/tangent has endpoints on both ends it is called a segment of a secant/tangent.

Secant Segment Theorem

If two secants share an external point then the product of the secants length with the external portion are equal.

$$\overline{CB} \cdot \overline{CA} = \overline{CD} \cdot \overline{CE}$$

Find the value of x.

Secant Tangent Theorem

If a secant and tangent share a point then the product of the secant and external part is equal to tangent squared.

$$\overline{BC} \cdot \overline{BD} = (\overline{BA})^2$$

Use the figure at the right to find the value of *x*.

